23 research outputs found

    Mechanisms for bacterial gliding motility on soft substrates

    Get PDF
    The motility mechanism of certain rod-shaped bacteria has long been a mystery, since no external appendages are involved in their motion which is known as gliding. However, the physical principles behind gliding motility still remain poorly understood. Using myxobacteria as a canonical example of such organisms, we identify here the physical principles behind gliding motility, and develop a theoretical model that predicts a two-regime behavior of the gliding speed as a function of the substrate stiffness. Our theory describes the elastic, viscous, and capillary interactions between the bacterial membrane carrying a traveling wave, the secreted slime acting as a lubricating film, and the substrate which we model as a soft solid. Defining the myxobacterial gliding as the horizontal motion on the substrate under zero net force, we find the two-regime behavior is due to two different mechanisms of motility thrust. On stiff substrates, the thrust arises from the bacterial shape deformations creating a flow of slime that exerts a pressure along the bacterial length. This pressure in conjunction with the bacterial shape provides the necessary thrust for propulsion. However, we show that such a mechanism cannot lead to gliding on very soft substrates. Instead, we show that capillary effects lead to the formation of a ridge at the slime-substrate-air interface, which creates a thrust in the form of a localized pressure gradient at the tip of the bacteria. To test our theory, we perform experiments with isolated cells on agar substrates of varying stiffness and find the measured gliding speeds to be in good agreement with the predictions from our elasto-capillary-hydrodynamic model. The physical mechanisms reported here serve as an important step towards an accurate theory of friction and substrate-mediated interaction between bacteria in a swarm of cells proliferating in soft media.Comment: Main article (8 pages and 8 figures) and Supplementary Informatio

    Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation

    Get PDF
    Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor

    Bacteria that Glide with Helical Tracks

    No full text
    corecore